Tag Archive: quantum computers



Can quantum computers assist in the decipherment of Minoan Linear A?” Keynote article on academia.edu

(Click on the graphical link below to download this ground-breaking article on the application of potentially superintelligent quantum quantum computers to the decipherment, even partial, of the ancient Minoan Linear A syllabary):

can-qauntum-computers-assist-us-with-decipherment-of-minoan-linear-a

This is a major new article on the application of quantum computers to the AI (artificial intelligence) involvement in the decipherment of the unknown ancient Minoan Linear A syllabary (ca. 2800 – 1500 BCE). This article advances the hypothesis that quantum computers such as the world’s very first fully functional quantum computer, D-Wave, of Vancouver, B.C., Canada, may very well be positioned to assist human beings in the decipherment, even partial, of the Minoan Linear A syllabary. This article goes to great lengths in explaining how quantum computers can expedite the decipherment of Minoan Linear A. It addresses the critical questions raised by Nick Bostrom, in his ground-breaking study, Superintelligence: Paths, Dangers, Strategies (Oxford University Press, 2014),

nick-bostom-superintelligence

in which he advances the following hypothesis:

Nick Bostrom makes it clear that artificial superintelligence (AS) does not necessarily have to conform to or mimic human intelligence. For instance, he says:
1. We have already cautioned against anthropomorphizing the capabilities of a superintelligent AI. The warning should be extend to pertain to its motivations as well. (pg 105)
and again,
2. This possibility is most salient with respect to AI, which might be structured very differently than human intelligence. (pg. 172) ... passim ... It is conceivable that optimal efficiency would be attained by grouping aggregates that roughly match the cognitive architecture of a human mind. It might be the case, for example, that a mathematics module must be tailored to a language module, in order for the three to work together... passim ... There might be niches for complexes that are either less complex (such as individual modules), more complex (such as vast clusters of modules), or of  similar complexity to human minds but with radically different architectures. 

... among others respecting the probable advent of superintelligence within the next 20-40 years (2040-2060).

This is a revolutionary article you will definitely not want to miss reading, if you are in any substantial way fascinated by the application of supercomputers and preeminently, quantum computers, which excel at lightning speed pattern recognition, which they can do so across templates of patterns in the same domain, to the decipherment of Minoan Linear A, an advanced technological endeavour which satisfies these scientific criteria. In the case of pattern recognition across multiple languages, ancient and modern, in other words in cross-comparative multi-language analysis, the astonishing capacity of quantum computers to perform this operation in mere seconds is an exceptional windfall we simply cannot afford not to take full advantage of.  Surely quantum computers’ mind-boggling lightning speed capacity to perform such cross-comparative multi-linguistic analysis is a boon beyond our wildest expectations.



Can super efficient quantum computers be of assistance at overcoming the seemingly insurmountable obstacles facing us in even a partial decipherment of Minoan Linear A?

Quantum computers, as exemplified by the fantastically powerful D-Wave computer system invented by Canadians and now fully operational in 2017 (Click on their banner to jump to their site):


d-wave-logo

most probably will prove to represent or in fact be a revolutionary development in the power and artificial intelligence of computers even now, as early as twenty-first century (say bu 2025 or so). The D-Wave computer is purported to be 10 million times faster than the most powerful supercomputer on earth! It was recently put to the test to solve an exceedingly complex protein synthesis model, and it did so 3,600 times faster than the the most powerful supercomputer on earth! That is a simply astonishing feat. In fact, quantum computers are purported to be able to solve seemingly impossible problems totally beyond the ken of the fastest supercomputer in the world.

If this proves to be so, is it not conceivable that applying the smarts of a quantum computer such as the D-Wave might lead to real advances in the potential decipherment of Minoan Linear A?

Take for instance my recent analysis and synopsis on the practically unimaginable formidable obstacles facing us in even beginning to get a handle on the syntax and semiotics of Minoan Linear A:

postobstacles

Is it not conceivable that a quantum computer such as the D-Wave might be able to at least make a dent in the potential decipherment, however partial, of Minoan Linear A? Or is it not? The question is not hypothetical. Proponents of the awesome power of quantum computers purport to be able to resolve supremely complex problems completely beyond the reach of even the most powerful of conventional digital supercomputers, as illustrated in this composite:

quantum-computers-intelligence-applications-decipherment

However, there may very well remain possibly insurmountable obstacles even for quantum computers in tackling a seemingly unsolvable problem as fractious as the decipherment of Minoan Linear A, however tentative. Some of the truly form obstacles that can and almost certainly shall practicably stand in the way of quantum computers being able to tackle this redoubtable challenge are:

In spite of the astonishing claims that proponents of quantum computing make for its potential in solving intractable problems which even the most powerful supercomputers cannot even hope to address, what is the substance of these claims? This scenario needs to be logically parsed.
1. Just because quantum computers have unquestionably proven to be able to realize exponentially more efficient leaps in some (and I lay the emphasis on just some) activities, this does not necessarily mean that these quantum leaps imply a parallel or even corresponding quantum leap in AI (artificial intelligence) learning.
2. Even if such a corresponding quantum leap in AI (artificial intelligence) learning were to prove practicable, and in effect take place (possibly by 2025), what is meant by AI (artificial intelligence) or to take the proposition even further, what is implied by the admittedly vague term superintelligence?
3. Do advanced AI or superintelligence necessarily have to conform to or mimic human intelligence, or might they possibly constitute a  discrete, self-contained phenomenon in and of themselves?
4. And if so (i.e. if 3), then would such a superintelligence (or 1 among many) be able to resolve problems, such as specifically, the potential decipherment, even if merely partial, of Minoan Linear A, (anywhere near) as well as human intelligence can? Or put another way, can quantum computing AI or superintelligent learning strategies mimic and even complement human learning strategies?
5. Or if they cannot (i.e. accomplish 4.), can they perhaps accomplish something along the same lines as human learning strategies just because they may in fact not actually resemble human intelligence?

These are just a few of the factors we must absolutely take into consideration if we are to make any assumptions whatsoever over the potential for quantum computers, no matter how clever they may turn out to be and in what sense clever, to accomplish a task as mind-boggling as even the partial decipherment of Minoan Linear A. I shall have plenty more to say about the potentialities of quantum computing in the realm of diachronic linguist decipherment in future, but the introduction suffices for now.


Check out my super nifty PINTEREST board, D-Wave and Quantum Computers!

pinterest-d-wave-and-quantum-computers


Can quantum computers assist us in the potentially swift decipherment of ancient languages, including Minoan Linear A?

d-wave-natural-languages-hypotheses

quantum-computing-applictions-cryptographya

No-one knows as yet, but the potential practical application of the decryption or decipherment of ancient languages, including Minoan Linear A, may at last be in reach. Quantum computers can assist us with such decipherments much much swifter than standard digital supercomputers.

austronesian-phylogenetic-tree-b-l

austronsian-sphylogenetic-tree-zoom-in

Here are just a few examples of the potential application of quantum computers to the decipherment of apparently related words in Minoan Linear A:

dide
didi
dija
dije
dusi
dusima
ida
idamete
japa
japadi
japaku
jari
jaria
jarinu
kireta2 (kiretai) *
kiretana *
kuro *
kuru
kuruku
maru (cf. Mycenaean mari/mare = “wool” ...  may actually be proto-Greek
maruku = made of wool? 
namikua
namikudua
paja
pajai (probably a diminutive, as I have already tentatively deciphered a few Minoan Linear A words terminating in “ai”, all of which are diminutives.  
qapaja
qapajanai
raki
rakii
rakisi
sati
sato
sii
siisi
taki
taku
takui
etc.

All of these examples, with the exception of  * kireta2 (kiretai), kiretana & kuro *, each of which I have (tentatively) deciphered, are drawn from Prof. John G. Youngers Linear A Reverse Lexicon:

linear-a-reverse-lexicon

It is to be noted that I myself have been unable to decipher manually on my own any of the related terms above, with the exception of the 3 words I have just mentioned.  The decipherment of kuro = “total” is 100 % accurate. I would like to add in passing that I have managed to (at least tentatively) decipher 107 Minoan Linear A words, about 21 % of the entire known lexicon. But everyone anywhere in the world will have to wait until 2018 to see the results of my thorough-going and strictly scientific research until the publication of my article on the partial decipherment of Minoan Linear A in Vol. 12 (2016) of Archaeology and Science (Belgrade), actually to be released in early 2018. But if you would like to get at least a very limited idea of what my eventual decipherment is all about, you can in the meantime consult this preview on my academia.edu account here:

preview-of-mycenaean-linear-b-tablet-rosetta-stone-for-minoan-linear-a-haghia-triada-ht-31

If quantum... a sonnet on quantum mechanics & computing and the mind

boson-god-particle

If quantumGod does not play dice with the universe.” 
- Albert Einstein, The Born-Einstein Letters, 1916-55 
... or does He?


If quantum is the boson of the mind,
if D-Wave is the wave the future rides,
if we are ready not to be purblind,
if we can take in bounds prodigious strides,
if God is in our molecules (or not),
if we are God Himself... or He is we,
with what is heaven’s promise fraught?
... or what’s unseen beyond we’ve yet to see?
If we’ve overshot the rim of space and time,
where were we likely sooner to arrive?
... and is the universe still as sublime
as ever? ... or are we now in overdrive?
     If you are reading this and feel confused,
     Well, join the club. I also am bemused.


Richard Vallance,


January 18, 2017



Just how did I manage to crack the previously impenetrable wall of Minoan Linear A and manage to at least partially decipher several tablets in Linear A?

... by relying heavily on the unconscious quantum level of mental processing and processes, as illustrated theoretically here


change-the-mind-change-reality

I is quite apparent from my theoretical analysis of how I came to my conclusions that I was using my mind in much the same way as a quantum computer. But that should not be surprising to anyone at all who is deeply devoted to scientific research of any kind, because that is how the scientific mind fundamentally operates, and always has.
 
To illustrate my point precisely, reference these 2 figures from my upcoming article in Archaeology and Science:

figure-3-minoan-linear-a-tablet-ht-31-haghia-triada-vocabulary

figure-7-translation-linear-a-tablet-ht-31-vessels

in which I reference my most successful decipherment of any Minoan Linear A tablet, that of Haghia Triada HT 31, which I was able to decipher in its totality by means of retrogressive cross-correlation with Mycenaean Linear B tablet Pylos Py TA 641-1952 (Ventris). My successful decipherment of this keystone Minoan Linear A tablet has served as the effectual template for my partial decipherment of numerous other Minoan Linear A tablets. Unfortunately, I cannot release my findings to the world at this time, as my article, “The Mycenaean Linear B “Rosetta Stone” to Minoan Linear A Tablet HT 31 (Haghia Triada) Vessels and Pottery” is slated for publication in Archaeology and Science (ISSN 1452-7448), Vol. 16, 2018, and as such is sealed in secrecy to the reading public until such time as its release sometime early in 2018. So I guess you will all have to be as patient as I must be, even though I already have all the answers firmly in hand. In the meantime, the 2 figures from that article I have posited above should serve to whet your appetite.


We are now following D-Wave Quantum Computers (Burnaby, B.C., Canada) on Twitter! You may want to also...

d-wave-systems

 

 


The staggering implications of the power of our unconscious mindset coupled with quantum computint in the endeavour to make great technological strides in linguistics! PART A:

all-in-your-mind



Or look at it this way! Quantum computers can tunnel through any complex quantum landscape, visiting all points simultaneously! This feat leaves conventional digital computers in the dust!

To illustrate again:


d-wave-quantum-computers-ability-to-handle-quantum-landscapes

quantum-landscape-energy-map

quantum-computing-landscape


optimization-landscapes-620

science-a



Quantum computing is capable of dealing with extremely complex 3-dimensional geometric constructs, all at super lightning speed!... some 10 million times faster than the worlds fastest digital supercomputer!

 Here are just a few examples to illustrate my point:

forms-multifaceted-sphere

qit_fig3

3-d-sacred-geometry-forms

multifaceted-geometric




Here are just a few of the most notable features of quantum computing!

basic-unit-qubit-620

unitary-matrix-620

The concept of entanglement alone has enormous implications for the potential decipherment of Minoan Linear A. It implies that we can disentangle Minoan Linear A.

quantum-computing-and-entanglement


NEW PINTEREST BOARD! D-Wave and Quantum Computers... & their application to the decipherment of Minoan Linear A and then some! CLICK to join:

d-wave-quantum-pinterest



The partial decipherment of Minoan Linear A: what I started, quantum computing could polish off! PART B

figure-14-minoan-linear-a-ht-114-to-129

figure-16-linear-a-ht-132-qareto-lease-field

figure-18-kireza-unit-of-standard-measurment-for-figs-1-basket


NOTA BENE! Quantum computing is already here! ... in 2017!... far far sooner than anyone had ever speculated or had even dreamed it could come into being! And it has staggering implications for huge advances in all branches of technology and the sciences! 

Dwave: the Quantum Computing Company (Click here): 

dwave-welcomoe-to-the-future

right here in Canada, no less, has just invented the first truly functional quantum computer. And the implications for the near, let alone the more distant, future of every branch of technology and for all of the sciences mankind is cognizant of are nothing short of staggering, indeed, dare I say, earth-shattering.

What is a quantum computer?

ALL ITALICS MINE

To quote verbatim the D-Wave company's definition of quantum computing:

A quantum computer taps directly into the fundamental fabric of reality — the strange and counter-intuitive world of quantum mechanics — to speed computation.

Quantum Computation:

Rather than store information as 0s or 1s as conventional computers do, a quantum computer uses qubits – which can be a 1 or a 0 or both at the same time. This “quantum superposition”, along with the quantum effects of entanglement and quantum tunnelling, enable quantum computers to consider and manipulate all combinations of bits simultaneously, making quantum computation powerful and fast.

How D-Wave Systems Work:

Quantum computing uses an entirely different approach than (sic: i.e. from) classical computing. A useful analogy is to think of a landscape with mountains and valleys. Solving optimization problems can be thought of as trying to find the lowest point on this landscape. (In quantum computers), every possible solution is mapped to coordinates on the landscape (all at the same time) , and the altitude of the landscape is the “energy’” or “cost” of the solution at that point. The aim is to find the lowest point on the map and read the coordinates, as this gives the lowest energy, or optimal solution to the problem.

Classical computers running classical algorithms can only “walk over this landscape”. Quantum computers can tunnel through the landscape making it faster to find the lowest point. The D-Wave processor considers all the possibilities simultaneously to determine the lowest energy required to form those relationships. The computer returns many very good answers in a short amount of time - 10,000 answers in one second. This gives the user not only the optimal solution or a single answer, but also other alternatives to choose from.

D-Wave systems use “quantum annealing” to solve problems. Quantum annealing “tunes” qubits from their superposition state to a classical state to return the set of answers scored to show the best solution.

Programming D-Wave:

To program the system a user maps their problem into this search for the lowest point. A user interfaces with the quantum computer by connecting to it over a network, as you would with a traditional computer (Comment by myself: This is one of the vital factors in the practical usefulness of the quantum computer). The user’s problems are sent to a server interface, which turns the optimization program into machine code to be programmed onto the chip. The system then executes a “quantum machine instruction” and the results are returned to the user.

D-Wave systems are designed to be used in conjunction with classical computers, as a “quantum co-processor”.

D-Wave’s flagship product, the 1000-qubit D-Wave 2X quantum computer, is the most advanced quantum computer in the world. It is based on a novel type of superconducting processor that uses quantum mechanics to massively accelerate computation. It is best suited to tackling complex optimization problems that exist across many domains such as:

Optimization 
Machine Learning 
Pattern Recognition and Anomaly Detection 
Financial Analysis 
Software/Hardware Verification and Validation

For the massive capabilities and the astounding specs of the D-Wave computer, Click on this link:

d-wave-2x-systewm

273-degress-celsius-near-absolute-zero

Comment by myself: Apparently, the severest limitation of the quantum computer (at least the first generation represented by D-Wave) is that it can only function at the temperature of – 273 celsius, i.e. a mere 0.015 degrees celsius above absolute zero, 180 X colder than the coldest temperature in the universe. But this limitation is merely apparent. Some will have it that this severe restriction makes the machine impractical, since, as they believe, it cannot be networkeed. But nothing could be further from the truth. It can be networked, and it is networked. All that is required is an external link from the near-absolute zero internal configuration of a quantum computer to the external wiring or wireless communication at room temperature at its peripheral to connect it directly to one or more digital computer consoles, thereby allowing the user(s) to connect the quantum computer indirectly to, you got it, the world wide web.

The implications of this real-world connectivity are simply staggering. Since the quantum computer, which is millions of times faster than the faster supercomputer in the world, it can directly feed its answers to any technological or scientific problem it can tackle at super-lightning speed to even personal computers, let alone the fastest supercomputers in existence! It instantly feeds its super-lightning calculations to the “terminal” computer and network (i.e. the Internet), thereby effectively making the latter (digital) system(s) virtually much more rapid than they actually are in reality, if you can wrap that one around your head.
    
MORE ON THE NATURE OF QUANTUM COMPUTING:

From this site:

quantum-computing-ions-sealed-in-a-vacuum

I quote, again verbatim:

Whereas classical computers encode information as bits that can be in one of two states, 0 or 1, the ‘qubits’ that comprise quantum computers can be in ‘superpositions’ of both at once. This, together with qubits’ ability to share a quantum state called entanglement, should enable the computers to essentially perform many calculations at once (i.e. simultaneously). And the number of such calculations should, in principle, double for each additional qubit, leading to an exponential speed-up.

This rapidity should allow quantum computers to perform certain tasks, such as searching large databases or factoring large numbers, which would be unfeasible for slower, classical computers. The machines could also be transformational as a research tool, performing quantum simulations that would enable chemists to understand reactions in unprecedented detail, or physicists to design materials that superconduct at room temperature.

The team plans to achieve this using a ‘chaotic’ quantum algorithm that produces what looks like a random output. If the algorithm is run on a quantum computer made of relatively few qubits, a classical machine can predict its output. But once the quantum machine gets close to about 50 qubits, even the largest classical supercomputers will fail to keep pace, the team predicts.  

And yet again, from another major site:

wauntum-computing-to-overtrun-cybersecuritySpooky action at a distance” is how Albert Einstein described one of the key principles of quantum mechanics: entanglement. Entanglement occurs when two particles become related such that they can coordinate their properties instantly even across a galaxy. Think of wormholes in space or Star Trek transporters that beam atoms to distant locations. Quantum mechanics posits other spooky things too: particles with a mysterious property called superposition, which allows them to have a value of one and zero at the same time; and particles’ ability to tunnel through barriers as if they were walking through a wall.

All of this seems crazy, but it is how things operate at the atomic level: the laws of physics are different. Einstein was so skeptical about quantum entanglement that he wrote a paper in 1935 titled “Can quantum-mechanical description of physical reality be considered complete?” He argued that it was not possible.
In this, Einstein has been proven wrong. Researchers recently accessed entangled information over a distance of 15 miles. They are making substantial progress in harnessing the power of quantum mechanics.

Einstein was right, though, about the spookiness of all this.

D-Wave says it has created the first scalable quantum computer. (D-Wave): 

Quantum mechanics is now being used to construct a new generation of computers that can solve the most complex scientific problems—and unlock every digital vault in the world. These will perform in seconds computations that would have taken conventional computers millions of years. They will enable better weather forecasting, financial analysis, logistical planning, search for Earth-like planets, and drug discovery. And they will compromise every bank record, private communication, and password on every computer in the world — because modern cryptography is based on encoding data in large combinations of numbers, and quantum computers can guess these numbers almost instantaneously.

There is a race to build quantum computers, and (as far as we know) it isn’t the NSA that is in the lead. Competing are big tech companies such as IBM, Google, and Microsoft; start-ups; defence contractors; and universities. One Canadian start-up says that it has already developed a first version of a quantum computer. A physicist at Delft University of Technology in the Netherlands, Ronald Hanson, told Scientific American that he will be able to make the building blocks of a universal quantum computer in just five years, and a fully-functional demonstration machine in a little more than a decade.

These will change the balance of power in business and cyber-warfare. They have profound national security implications, because they are the technology equivalent of a nuclear weapon.

Let me first explain what a quantum computer is and where we are.

In a classical computer, information is represented in bits, binary digits, each of which can be a 0 or 1. Because they only have only two values, long sequences of 0s and 1s are necessary to form a number or to do a calculation. A quantum bit (called a qubit), however, can hold a value of 0 or 1 or both values at the same time — a superposition denoted as “0+1.”

The power of a quantum computer increases exponentially with the number of qubits. Rather than doing computations sequentially as classical computers do, quantum computers can solve problems by laying out all of the possibilities simultaneously and measuring the results.

Imagine being able to open a combination lock by trying every possible number and sequence at the same time. Though the analogy isn’t perfect — because of the complexities in measuring the results of a quantum calculation — it gives you an idea of what is possible.

Most researchers I have spoken to say that it is a matter of when — not whether — quantum computing will be practical. Some believe that this will be as soon as five years; others say 20 years. (ADDDENDUM by myself. WRONG! Not in 20 years, but right now. We have already invented the first functional quantum computer, the D-Wave (see above)). 

One Canada-based startup, D-Wave, says it has already has done it. Its chief executive, Vern Brownell, said to me in an e-mail that D-Wave Systems has created the first scalable quantum computer, with proven entanglement, and is now working on producing the best results possible for increasingly complex problems. He qualified this claim by stressing that their approach, called “adiabatic computing,” may not be able to solve every problem but has a broad variety of uses in optimizing computations; sampling; machine learning; and constraint satisfaction for commerce, national defence, and science. He says that the D-Wave is complementary to digital computers; a special-purpose computing resource designed for certain classes of problems.

The D-Wave Two computer has 512 qubits and can, in theory, perform 2 raised to 512 operations simultaneously. That’s more calculations than there are atoms in the universe — by many orders of magnitude. Brownell says the company will soon be releasing a quantum processor with more than 1,000 qubits. He says that his computer won’t run Shor’s algorithm, an algorithm necessary for cryptography, but it has potential uses in image detection, logistics, protein mapping and folding, Monte Carlo simulations and financial modeling, oil exploration, and finding exoplanets (and allow me to add, in breaking the entire genome!)

So quantum computers are already here in a limited form, and fully functional versions are on the way. They will be as transformative for mankind as were the mainframe computers, personal computers, and smartphones that we all use. As do all advancing technologies, they will also create new nightmares. The most worrisome development will be in cryptography. Developing new standards for protecting data won’t be easy. The RSA standards that are in common use each took five years to develop. Ralph Merkle, a pioneer of public-key cryptography, points out that the technology of public-key systems, because it is less well-known, will take longer to update than these — optimistically, ten years. And then there is a matter of implementation so that computer systems worldwide are protected. Without a particular sense of urgency or shortcuts, Merkle says, it could easily be 20 years before we’ve replaced all of the Internet’s present security-critical infrastructure.

(ADDENDUM: I think not! It will happen far, far sooner than that! I predict possibly as early as 2020.)  It is past time we began preparing for the spooky technology future we are rapidly heading into. Quantum computing represents the most staggering and the swiftest advancement of human hyperintelligence in the history of humankind, with the potential for unlocking some of the most arcane secrets of the universe itself. It signifies, not just a giant, but literally a quantum leap in human intelligence way, way beyond the pale. If we thought the Singularity was near before the advent of the quantum computer, what about now? Think about this, even for the merest split second, and you will blow your own mind!   It certainly blew mine!  Think of this too. What if one were to directly tap the human mind into a room temperature digital peripheral of a quantum computer? What then? I pretty much have a very good idea of what then!  

The staggering implications of quantum computing for the potential total decipherment of, not only Minoan Linear A, but of every other as yet undeciphered, unknown ancient language:
 
In the next post, I shall expostulate the profound implications the advent of the quantum computer is bound to have on the decipherment of not only Minoan Linear A, but of every other as-yet unknown, and undeciphered, ancient language. I strongly suspect that we will now soon be able to crack Minoan Linear A, and several other unknown ancient languages to boot.

And, trust me, I shall be one of the first historical linguists at the forefront of this now potentially attainable goal, which is now tantalizingly within our reach. 

LinneaTanner.com - Apollo's Raven

LinneaTanner.com - Apollo's Raven

When Women Inspire

Highlighting Inspiring Women Around the World

Evelina

by Evelina Di Lauro

God Is Everything

Jesus Lord Jehovah God Christian Bible Religion Holy Spirit

The Deadliest Blogger: Military History Page

The historical writing of Barry C. Jacobsen

THE SHIELD OF ACHILLES

Artistic Reconstruction and Original Translation From Homer's "Iliad" by Kathleen Vail

Akhelas Writing

Myriad Musings of Austin Conrad

Be Like Water

Music, Film and Life

Little Fears

Flash fiction tales of humor, horror and whimsy

Im ashamed to die until i have won some victory for humanity.(Horace Mann)

Domenic Garisto/havau22.com / IF YOU CAN'T BE THE POET, BE THE POEM (David Carradine) LIFE IS NOT A REHERSAL,SO LIVE IT.

Φιλολογικά φύλλα

... από την περιπέτεια της θεωρίας, της ερμηνείας και της διδασκαλίας

Le Blog BlookUp

Imprimez et transformez vos contenus digitaux, blogs et réseaux sociaux, en magnifiques livres papier sur blookup.com

Diwiyana's Dreamscape

Just another WordPress.com site

The Evolutionary Mind

Raw, Unfiltered, Motivation

pseudopr1me

Just another WordPress.com site

Adham Smart

Often written, sometimes read

Elder Mountain Dreaming

Dreamer's Collective, Dream & Soul Journeys, Magic Soul Circles, Sacred Artist's Retreat-Residency, Traditional Food Gardens, 13 Moon Lunar Work-Study, Art Circles, Fire Circles, Seasonal Moon Sweats, Folk Healing, Medical Intuitive, Readings, Grounded Mysticism and Disciplined Dream Advancement and More.

archbhoo

Just another WordPress.com site

Memnison Journal

Jim Rittenhouse's semidaily journal of news, commentary and reports

Under the influence!

Myths, legends, folklore and tales from around the world

archaeologythimbleful

...in small doses

AFRICAN HOMAGE

CONTEMPORARY ART GALLERY

peiraieus

A Mental Repository

My Blog

This WordPress.com site is the cat’s pajamas

Hidalgo & Suárez - Estudio de Historia y Genealogía

Genealogista profesional en España - Professional genealogist in Spain - Généalogiste professionnel en Espagne

Rearview Mirror

Music, Film, Art, History and more....

Virginia Views

Country Living for Beginners

Varina's Moon Rising

To Strive, To Seek, To Find, And Not To Yield

uerbavolant

4 out of 5 dentists recommend this WordPress.com site

ArchaeoFox: Exploring the World Through the Past

Follow the research of an Archaeology Phd student over the next four years: The things he discovers, the places it brings and the people he meets along the way. (Site spelling variations; Arceofox archeofox archeryfox)

Rafael Tenório

Jornalista | Escritor | Redator

hipmonkey

He Come Groovin' Up Slowly

A Closer Look

This is the blog where I read, think about reading or complain about it.

%d bloggers like this: