PART B: The application of geometric co-ordinate analysis (GCA) to parsing scribal hands in Minoan Linear A and Mycenaean Linear BIntroduction:I propose to demonstrate how geometric co-ordinate analysis of Minoan Linear A and Mycenaean Linear B can confirm, isolate and identify with precision the X Y co-ordinates of single syllabograms, homophones and ideograms in their respective standard fonts, and in the multiform cursive “deviations” from the invariable on the X Y axis, the point of origin (0,0) on the X Y plane, and how it can additionally parse the running co-ordinates of each character, syllabogram or ideogram of any of the cursive scribal hands in each of these scripts. This procedure effectively epitomizes the “style” of any scribe’s hand, just as we would nowadays characterize any individual’s handwriting style. This hypothesis is at the cutting edge in the application of graphology a.k.a epigraphy exclusively based on the scientific procedure of artificial intelligence geometric co-ordinate analysis (AIGCA) of scribal hands, irrespective of the script under analysis. If supercomputer or ultra high speed Internet generated artificial intelligence geometric co-ordinate analysis of Sumerian and Akkadian cuneiform is a relatively straightforward matter, as I have summarized it in my first article [1], that of Minoan Linear A and Mycenaean Linear B, both of which share more complex additional geometric constructs in common, appears to be somewhat more of a challenge, at least at first glance. When we come to apply this technique to more complex geometric forms, the procedure appears to be significantly more difficult to apply. Or does it? The answer to that question lies embedded in the question itself. The question is neither closed nor open, but simply rhetorical. It contains its own answer. It is in fact the hi-tech approach which decisively and instantaneously resolves any and all difficulties in every last case of geometric co-ordinate analysis of any script, syllabary or indeed any alphabet, ancient or modern. It is neatly summed up by the phrase, “computer-based analysis”, which effectively and entirely dispenses with the necessity of having to parse scribal hands or handwritingby manual visual meansor analysis at all. Prior to the advent of the Internet, modern supercomputers and artificial intelligence(AI), geometric co-ordinate analysis of any phenomenon, let alone scribal hands, or handwriting post AD (anno domini), would have been a tedious mathematical process hugely consuming of time and human resources, which is why it was never attempted then.The groundbreaking historical epigraphic studies of Emmett L. Bennet Jr. and Prof. John Chadwick (1966):All this is not to say that some truly remarkable analyses of scribal hands in Mycenaean Linear B were not realized in the twentieth century. Although such studies have been few and far between, one in particular stands out as pioneering. I refer of course to Emmett L. Bennet Jr.’s remarkable paper, “Miscellaneous Observations on the Forms and Identities of Linear B Ideograms” (1966) [2], in which he single-handedly undertook a convincing epigraphic analysis of Mycenaean Linear B through manual visual observation alone, without the benefit of supercomputers or the ultra-high speed internet which we have at our fingertips in the twenty-first century. His study centred on the ideograms for wine (*131), (olive) oil (*130), *100 (man), *101 (man) & *102 (woman) rather than on any of the Linear B syllabograms as such. The second, by John Chadwick in the same volume, focused on the ideogram for (olive) oil. As contributors to the same Colloquium, they essentially shared the same objectives in their epigraphic analyses. Observations which apply to Bennett’s study of scribal hands are by and large reflected by Chadwick’s. Just as we find in modern handwriting analysis, both Bennett and Chadwick concentrated squarely on the primary characteristics of the scribal hands of a considerable number of scribes. Both researchers were able to identify, isolate and classify the defining characteristics of the various scribal hands and the attributes common to each and every scribe, accomplishing this remarkable feat without the benefit of super high speed computer programming. Although Prof. Bennett Jr. did not systematically enumerate his observations on the defining characteristics of particular scribal hands in Mycenaean Linear B, we shall do so now, in order to cast further light on his epigraphic observations of Linear B ideograms, and to situate these in the context of the twenty-first century hi tech process of geometric co-ordinate analysis to scribal hands in Mycenaean Linear B. I have endeavoured to extrapolate the rather numerous variables Bennett assigned determining the defining characteristics of various scribal hands in Linear B. They run as follows (though they do not transpire in this order in his paper): (a) The number of strokes (vertical, horizontal and diagonal – right or left – vary significantly from one scribal hand to the next. This particular trait overrides most others, and must be kept uppermost in mind. Bennett characterizes this phenomenon as “opposition between varieties”. For more on the concept of ‘oppositions’,seemy observations on the signal theoretical contribution by Prof. L. R. Palmer below. (b) According to Bennet, while some scribes prefer to print their ideograms, others use a cursive hand. But the very notion of “printing” as a phenomenonper secannot possibly be ascribed to the Linear B tablets. Bennet’s so-called analysis of scribal “printing” styles I do not consider as printing at all, but rather as the less common scribal practice of precise incision, as opposed to the more free-form cursive style adopted by most Linear B scribes. Incision of characters, i.e. Linear B, syllabograms, logograms and ideograms, predates the invention of printing in the Western world by at least two millennia, and as such cannot be attributed to printing as we understand the term. Bennett was observing the more strictly geometric scribal hands among those scribes who were more meticulous than others in adhering more or less strictly to the dictates of linear, circular and other normalized attributes of geometry, as outlined in the economy of geometric characteristics of Linear B in Figure 1: Click toENLARGEBut even the more punctilious scribes were ineluctably bound to deviate from what we have established as the formal modern Linear B font, the standard upon which geometric co-ordinate analysis depends, and from which all scribal hands in both Minoan Linear A and Mycenaean Linear B, the so-called “printed” or cursive, must necessarily derive or deviate. (c) as a corollary of Bennet’s observation (b), some cursive hands aresans serif, othersserif. (d) similarly, the length of any one or any combination of strokes, sans serif or serif, can clearly differentiate one scribal hand from another. (e) as a corollary of (c), some serif hands are left-oriented, while the majority are right-oriented, as illustrated here in Figure 2: Click toENLARGE(f) As a function of (d) above, the “slant of the strokes” Bennett refers to is the determinant factor in the comparison between one scribal hand and any number of others, and as such constitutes one of the primary variables in his manual visual analytic approach to scribal hands. (g) In some instances, some strokes are entirely absent, whether or not accidentally or (un)intentionally. (h) Sometimes, elements of each ideogram under discussion (wine, olive oil and man, woman or human) touch, just barely touch, retouch, cross, just cross, recross or fully (re)cross one another. According to Bennet, these sub-variables can often securely identify the exact scribal hand attributed to them. (i) Some strokes internal to each of the aforementioned ideograms appear to be partially unconnected to others, in the guise of a deviance from the “norm” as defined by Bennett in particular, although I myself am unable to ascertain which style of ideogram is the “norm”, whatever it may be, as opposed to those styles which diverge from it, i.e. which I characterize as mathematically deviant from the point of origin (0,0) on the X Y co-ordinate axis on the two-dimensional Cartesian plane. Without the benefit of AIGCA, Bennett could not possibly have made this distinction. Whereas any partially objective determination of what constitutes the “norm” in any manual scientific study not finessed by high speed computers was pretty much bound to be arbitrary, the point of origin (0,0) on the X Y axis of the Cartesian two-dimensional plane functions as a sound scientific invariable from which we define the geometrically pixelized points of departure by means of ultra high speed computer computational analysis (AIGCA). (j) The number of strokes assigned to any ideogram in Linear B can play a determinant role. One variation in particular of the ideogram for wine contains only half the number of diagonal strokes as the others. This Bennett takes to be the deviant ideogram for must, rather than wine itself, and he has reasonably good grounds to make this assertion. Likewise, any noticeable variation in the number of strokes in other ideograms (such as those for olive oil and humans) may also be indicators ofspecific deviant meaningspossibly assigned to each of them, whatever these might be. But we shall never know. With reference to the many variants for “man” or human (*101), I refer you to Bennett’s highly detailed chart on page 22 [3]. It must be conceded that AI geometric co-ordinate analysis is incapable of making a distinction between the implicit meanings of variants of the same ideogram, where the number of strokes comprising said ideogram vary, as in the case of the ideogram for wine. But this caveat only appliesifBennet’s assumption that the ideogram for wine with fewer strokes than the standard actually means (wine) must. Otherwise, the distinction is irrelevant to the parsing by means of AIGCA of this ideogram in particular or of any other ideogram in Linear B for which the number of strokes vary, unless corroborating evidence can be found to establish variant meanings for each and every ideogram on a case by case basis. Such a determination can only be made by human analysis. (k) As Bennett has it, the spatial disposition of the ideograms, in other words, how much space each ideogram takes up on the various tablets, some of them consuming more space than others, is a determinant factor. He makes a point of stressing that some ideograms are incised within a very “cramped and confined space”. The practice of cramming as much text as possible into an allotted minimum of remaining space on tablets was commonplace. Pylos tablet TA 641-1952 (Ventris) is an excellent example of this ploy so many scribes resorted to when they discovered that they had used up practically all of the space remaining on any particular tablet, such as we see here on Pylos tablet 641-1952 (Figure 3): Click toENLARGEYet cross comparative geometric analysis of the relative size of the “font” or cursive scribal hand of this tablet and all others in any ancient script, hieroglyphic, syllabary, alphabetical or otherwise, distinctly reveals that neither the “font” nor cursive scribal hand size have any effect whatsoever on the defining set of AIGCA co-ordinates — however minuscule (as in Linear B) or enormous (as in cuneiform) — of any character, syllabogram or ideogram in any script whatsoever. It simply is not a factor. (l) Some ideograms appear to Bennett “almost rudimentary” because of the damaged state of certain tablets. It is of course not possible to determine which of these two factors, cramped space or damage, impinge on the rudimentary outlines of some of the same ideograms, be these for wine (must), (olive) oil or humans, although it is quite possible that both factors, at least according to Bennet, play a determinant rôle in this regard. But in fact they cannot and do not, for the following reasons: 1. So-called “rudimentary” incisions may simply be the result of end-of-workday exhaustion or carelessness or alternatively of remaining cramped space; 2. As such, they necessarily detract from an accurate determination of which scribe’s hand scribbled one or more rudimentary incisions on different tablets, even by means of AIGCA; 3. On the other hand, the intact incisions of the same scribe (if they are present) may obviate the necessity of having to depend on rudimentary scratchings. But the operative word here isthey are present. Not only that, even in the presence of intact incisions by said scribe, it all depends on the total number of discrete incisions made, i.e. on the number of different syllabograms, logograms, ideograms, word dividers (the vertical line in Linear B), numerics and other doodles. We shall more closely address this phenomenon below. (m) Finally, some scribes resort to more elaborate cursive penning of syllabograms, logograms, ideograms, the Linear B word dividers, numerics and other marks, although it is open to serious question whether or not the same scribe sometimes indulges in such embellishments, and sometimes does not. This throws another wrench into the accurate identification of unique scribal hands, even with AIGCA. The aforementioned variables as noted though not explicitly enumerated by Bennett summarize how he and Chadwick alike envisioned the prime characteristics or attributes, if you like, the variables, of various scribal hands. Each and every one of these attributes constitutes of course a variable or a variant of an arbitrary norm, whatever it is supposed to be. The primary problem is that, if we are to lend credence to the numerous distinctions Bennet ascribes to scribal hands, there are simplyiffar too many of these variables. When one is left with no alternative than to parse scribal hands by manual visual means, as were Bennet and Chadwick, there is just no way to dispense with a plethora of variations or with the arbitrary nature of them. And so the whole procedure (manual visual inspection) is largely invalidated from a strictly scientific point of view. In light of my observations above, as a prelude to our thesis, the application of artificial geometric co-ordinate analysis (AIGCA) to scribal hands in Minoan Linear A and Mycenaean Linear B, I wish to draw your undivided attention to the solid theoretical foundation laid for research into Linear B graphology or epigraphy by Prof. L.R. Palmer, one of the truly exceptional pioneers in Linear B linguistic research, who set the tone in the field to this very day, by bringing into sharp focus the single theoretical premise — and he was astute enough to isolate one and one only — upon which any and all research into all aspects of Mycenaean Linear B must be firmly based. I find myself compelled to quote a considerable portion of Palmer’s singularly sound foundational scientific hypothesis underpinning the ongoing study of Linear which he laid in The Interpretation of Mycenaean Greek Texts [4]. (All italics below mine). Palmer contends that.... The importance of the observation of a series of ‘oppositions’ at a given place in theformulaic structuremay be further illustrated...passim... A study ofhandwritingconfirms this conclusion. The analysis removes the basis for a contention that the tablets of these sets were written at different times and list given herdsmen at different stations. It invalidates the conclusion that the texts reflect a system of transhumance (seep. 169 ff.). We may insist further onthe principle of economyof theses in interpretation...passim...Seepp. 114 ff. for the application of this principle, with a reduction in the number of occupational categories. New texts offer an opportunityfor the most rigorous application of the principle of economy. Here the categories set up for the interpretation of existing materials will stand in the relation of ‘predictions’ to the new texts, and the new material provides a welcome opportunity for testing not only the decipherment but also interpretational methods. The first step will be to interpret the new data within the categorical framework already set up. Verificatory procedures will then be devised to test the results which emerge. If they prove satisfactory, no furthers categories will be added. The number of hypotheses set up to explain a given set of facts is anobjective measureof the ‘arbitrary’, and explanations can be graded on a numerical scale. A completely ‘arbitrary’ explanation is one which requires x hypotheses for y facts.It follows that the most ‘economical’ explanation is the least ‘arbitrary’. I could not have put it better myself. The more economical the explanation, in other words, the underlying hypothesis, the less arbitrary it must necessarily be. In light of the fact that AIGCA reduces the hypothetical construct for the identification of scribal style toa single invariable,the point of origin (0,0) on the two-dimensional Cartesian X Y plane, we can reasonably assert that this scientific procedure practically eliminates such arbitrariness. We are reminded of Albert Einstein’s supremely elegant equation E = Mc2 in the general theory of relatively, which reduces all variables to a single constant. Yet, what truly astounds is the fact that Palmer was able to reach such conclusions in an age prior to the advent of supercomputers and the ultra high speed Internet, an age when the only means of verifying any such hypothesis was the manual visual. In light of Palmer’s incisive observations and the pinpoint precision with which he draws his conclusion, it should become apparent to any researcher in graphology or epigraphy delving into scribal hands in our day and age that all of Bennet’s factors are variables ofgeometric patterns, all of which in turn are mathematical deviations from the point of origin (0,0) on the two-dimensional X Y Cartesian axis. As such Bennet’s factors or variables, established as they were by the now utterly outdated process of manual visual parsing of the differing styles of scribal hands, may be reduced to one variable and one only through the much more finely tuned fully automated computer-generated procedure of geometric co-ordinate analysis. When we apply the technique of AI geometric co-ordinate analysis to the identification, isolation and classification of scribal hands in Linear B, we discover, perhaps not to our surprise, that all of Bennet’s factors (a to m) can be reduced to geometric departures from a single constant, namely, the point of origin (0,0) on the X Y axis of a two-dimensional Cartesian plane, which alone delineates the “style” of any single scribe, irrespective of the script under analysis, where style is defined as afunctionof said analysis, and nothing more. It just so happens that another researcher has chosen to take a similar, yet unusually revealing, approach to manual visual analysis of scribal hands in 2015. I refer to Mrs. Rita Robert’s eminently insightful overview of scribal hands at Pylos, a review of which I shall undertake in light of geometric co-ordinate analysis in my next article.Geometric co-ordinate analysis via supercomputer or the ultra high speed Internet:Nowadays, geometric co-ordinate analysis can be finessed by any supercomputer plotting CGA co-ordinates down to the very last pixel at lightning speed. The end result is that any of a number of unique scribal hands or of handwriting styles using ink, ancient on papyrus or modern on paper, can be identified, isolated and classified in the blink of an eye, usually beyond a reasonable doubt. However strange as it may seemprima facie, I leave to the very last the application of this practically unimpeachable procedure to the analysis and the precise isolation of the unique style of the single scribal hand responsible for the Edwin Smith papyrus, as that case in particular yields the most astonishing outcome of all.Geometric co-ordinate analysis: Comparison between Minoan Linear A and Mycenaean Linear B:Researchers and linguists who delve into the syllabaries of Minoan Linear A and Mycenaean Linear B are cognizant of the fact that the syllabograms in each of these syllabaries considerably overlap, the majority of them (almost) identical in both, as attested by Figures 4 & 5: Click toENLARGEBy means of supercomputers and/or through the medium of the ultra-high speed Internet, geometric co-ordinate analysis (AIGCA) of all syllabograms (nearly) identical in both of syllabaries can be simultaneously applied with proximate equal validity to both. Minoan Linear A and Mycenaean Linear B share ageometric economywhich ensures that they both are readily susceptible to AI geometric co-ordinate analysis, as previously illustrated in Figure 1, especially in the application of said procedure to the standardized font of Linear B, as seen here in Figure 6: Click toENLARGEAnd what applies to the modern standard Linear B font inevitably applies to the strictlymathematical deviationsof the cursive hands of any number of scribes composing tablets in either syllabary (Linear A or Linear B). Even more convincingly, AIGCA via supercomputer or the ultra high speed Internet is ideally suited to effecting a comparative analysis and of parsing scribal hands in both syllabaries, with the potential of demonstrating a gradual drift from the cursive styles of scribes composing tablets in the earlier syllabary, Minoan Linear A to the potentially more evolved cursive hands of scribes writing in the latter-day Mycenaean Linear B. AICGA could be ideally poised to reveal a rougher or more maladroit style in Minoan Linear A common to the earlier scribes, thus potentially revealing a tendency towards more streamlined cursive hands in Mycenaean Linear B,ifit ever should prove to be the case. AIGCA could also prove the contrary. Either way, the procedure yields persuasive results. This hypothetical must of course be put squarely to the test, even according to the dictates of L.R. Palmer, let alone my own, and confirmed by recursive AICGA of numerous (re-)iterations of scribal hands in each of these syllabaries. Unfortunately, the corpus of Linear A tablets is much smaller than that of the Mycenaean, such that cross-comparative AIGCA between the two syllabaries will more than likely prove inconclusive at best. This however does not mean that cross-comparative GCA should not be adventured for these two significantly similar scripts.Geometric co-ordinate analysis of Mycenaean Linear B:A propos of Mycenaean Linear B, geometric co-ordinate analysis is eminently suited to accurately parsing its much wider range of scribal hands. An analysis of the syllabogram for the vowelOreveals significant variations of scribal hands in Mycenaean Linear B, as illustrated in Figure 2 above, repeated here for convenience: Yet the most conspicuous problem with computerized geometric co-ordinate analysis (AIGCA) of a single syllabogram, such as the vowelO, is that even this procedure is bound to fall far short of confirming the subtle or marked differences in the individual styles of the scores and scores of scribal hands at Knossos alone, where some 3,000 largely intact tablets have been unearthed and the various styles of numerous other scribes at Pylos, Mycenae, Thebes and other sites where hundreds more tablets in Linear B have been discovered. So what is the solution? It all comes down to the application of ultra-high speed GCA toevery last one of the syllabogramson each and every one of some 5,500+ tablets in Linear B, as illustrated in the table of several Linear B syllabograms in Figures 7 and 8, through which we instantly ascertain those points where mathematical deviations on all of the more complex geometric forms put together utilized by any Linear B scribe in particular leap to the fore. Here, the prime characteristics of any number of mathematical deviations of scribal hands for all geometric forms, from the simple linear and (semi-)circular, to the more complex such as the oblong, wave form, teardrop and tomahawk, serve as much more precise markers or indicators highly susceptible of revealing the subtle or significant differences among any number of scribal hands. Click toENLARGE Figures 7 & 8:By zeroing in on Knossos tablet KN 935 G d 02 (Figure 9) we ascertain that the impact of the complexities of alternate geometric forms on AIGCA is all the more patently obvious: Click toENLARGEWhen applied to the parsing of every lastsyllabogram, homophone, logogram, ideogram, numeric, Linear B word divider and any other marking of any kindon any series of Linear B tablets, ultra high speed geometric co-ordinate analysis can swiftly extrapolate a single scribe’s style from tablet KN 935 G d 02 in Figure 9, revealing with relative ease which (largely) intact tablets from Knossos share the same scribal hand with this one in particular, which serves as ourtemplatesample. We can be sure that there are several tablets for which the scribal hand is in common with KN 935 G d 02. What’s more, extrapolating from this tabletas templateall other tablets which share the same scribal hand attests to the fact that AIGCA can perform the precise same operation on any other tablet whatsoever serving in its turnas the templatefor another scribal hand, and so on and so on. Take any other (largely) intact tablet of the same provenance (Knossos), for which the scribal hand has previously been determined by AIGCA to bedifferent from that of KN 935 G d 02, and use that tablet as yournew templatefor the same cross-comparative AICGA procedure. Andvoilà, you discover that the procedure has extrapolated yet another set of tablets for which there is another scribal hand, in other words, adifferent scribal style, in the sense that we have already defined style. But can what works like a charm for tablets from Knossos be applied with relative success to Linear B tablets of another provenance, notably Pylos? The difficulty here lies in the size of the corpus of Linear B tablets of a specific provenance. While AIGCA is bound to yield its most impressive results with the enormous trove of some 3,000 + (largely) intact Linear B tablets from Knossos, the procedure is susceptible of greaterstatistical errorwhen applied to a smaller corpus of tablets, such as from Pylos. It all comes down to the principle ofinverse ratios. And where the number of extant tablets from other sources is very small, as is the case with Mycenae and Thebes, the whole procedure of AIGCA is seriously open to doubt. Still, AIGCA is eminently suited to clustering in one geometric set all tablets sharing the same scribal hand, irrespective of the number of tablets and of the subset of all scribal hands parsed through this purely scientific procedure.Conclusion:We can therefore safely conclude that ultra high speed artificial intelligence geometric co-ordinate analysis (AIGCA), through the medium of the supercomputer or on the ultra high speed Internet, is well suited to identifying, isolating and classifying the various styles of scribal hands in both Minoan Linear A and Mycenaean Linear B. In Part C, we shall move on to the parsing of scribal hands in Arcado-Cypriot Linear C, of the early hieratic handwriting of the scribe responsible for the Edwin Smith Papyrus (1600 BCE) and ultimately of the vast number of handwriting styles and fonts of today.References and Notes:[1] The application of geometric co-ordinate analysis (GCA) to parsing scribal hands: Part A: Cuneiform https://www.academia.edu/17257438/The_application_of_geometric_co-ordinate_analysis_GCA_to_parsing_scribal_hands_Part_A_Cuneiform [2] “Miscellaneous Observations on the Forms and Identities of Linear B Ideograms” pp. 11-25 in,Proceedings of the Cambridge Colloquium on Mycenaean Studies. Cambridge: Cambridge University Press, © 1966. Palmer, L.R. & Chadwick, John, eds. First paperback edition 2011. ISBN 978-1-107-40246-1 (pbk.) [3] Op. Cit., pg. 22 [4] pp. 33-34 in Introduction. Palmer, L.R.The Interpretation of Mycenaean Texts. Oxford: Oxford at the Clarendon Press, © 1963. Special edition for Sandpiper Book Ltd., 1998. ix, 488 pp. ISBN 0-19-813144-5

## Tag Archive: graphologists

## PART B: The application of geometric co-ordinate analysis (GCA) to parsing scribal hands in Minoan Linear A and Mycenaean Linear B

Filed under: academia.edu, Decipherment, LINEAR B, Measurement, MEDIA, SCRIPTA MINOA, Tablets by vallance22 — 2 Comments

November 5, 2015

Tags: Ancient Greek, Cartesian, co-ordinate analysis, co-ordinates, computational linguistics, computers, cuneiform, cursive, Decipherment, epigraphy, Font, Fonts, geometric, geometry, graphologists, graphology, homophones, ideograms, internet, Knossos, Linear A, LINEAR B, Linear B Pylos Tablet 641-1952, Linear B Tablets, Linguistics, logograms, mathematical, mathematics, Mycenaean, Mycenaean Greek, Pylos, SCRIPTA MINOA, Sir Arthur Evans, statistical, statistical analysis, statistical error, statistics, supercomputers, syllabary, syllabic scripts, syllabograms, tablets, Thebes, translation, waveforms, wavelength, waves, X Y co-ordinates

## NOW on academia.edu: The application of geometric co-ordinate analysis (GCA) to parsing scribal hands: Part A: Cuneiform

Filed under: academia.edu, Decipherment, Linear A, LINEAR B, LINEAR C Arcado-Cypriot, Tablets by vallance22

October 24, 2015

NOW on academia.edu: The application of(GCA) to parsing scribal hands: Part A:geometric co-ordinate analysisCuneiformof cuneiform, the Edwin-Smith hieroglyphic papyrus (ca. 1600 BCE), Minoan Linear A, Mycenaean Linear B and Arcado-Cypriot Linear C can confirm, isolate and identify with precision the X Y co-ordinates of single characters or syllabograms in their respective standard fonts, and in the multiform cursive “deviations” from their fixed font forms, or to put it in different terms, can parse the running co-ordinates of each character, syllabogram or ideogram of any scribal hand in each of these scripts. This procedure effectively encapsulates the “style” of any scribe’s hand. This hypothesis is at the cutting edge in the application of graphology a.k.a epigraphy based entirely on the scientific procedure of geometric co-ordinate analysis (GCA) of scribal hands, irrespective of the script under analysis. RichardGeometric co-ordinate analysis

Tags: Akkadian, Ancient Greek, Arcado-Cypriot, Babylon, Babylonian, Cartesian, co-ordinate analysis, co-ordinates, cuneiform, Cypriot, Decipherment, epigraphy, geometric, geometry, graphologists, graphology, homophones, ideograms, Linear A, LINEAR B, Linear B Tablets, Linear C, LinearB, Linguistics, Mycenaean, Mycenaean Greek, Sumerian, syllabary, syllabic scripts, syllabograms, tablets, translation, X Y co-ordinates

## Uploaded to academia.edu, my research on: Alan Turing & Michael Ventris: a Cursory Comparison of their Handwriting

May 24, 2015

Uploaded to academia.edu, my research on:Alan Turing & Michael Ventris: a Cursory Comparison of their HandwritingAlthough I originally posted this brief research paper here on our blog about two months ago, I have just uploaded a revised, and slightly more complete version of it here: which anyone of you visiting our blog may download at leisure, provided that you first sign up with academia.edu, which is a free research clearinghouse, replete with thousands of superb research articles in all areas of the humanities and arts, science and technology and, of course, linguistics, ancient and modern. The advantages of signing up with academia.edu are many. Here are just a few: 1. While it is easy enough to read any original post on our blog, it is very difficult to upload it, especially since almost all of our posts contain images, which do not readily lend themselves to uploading into a word processor such as Word or Open Office. 2. On the other hand, since almost all research articles, papers, studies, journal articles and conference papers are in PDF format, they can be uploaded from academia.edu with ease. You will of course need to install the latest version of the Adobe Acrobat Reader in order to download any research paper or article, regardless of author(s) or source(s). You can download it from here: 3. academia.edu is the perfect venue for you to set up your own personal page where you may upload as many of your research papers as you like. 4. academia.edu is also one of the best research resource hubs on the entire Internet where you can find not just scores, but even hundreds of papers or documents of (in)direct interest to you as a researcher in your own right in your own field of expertise. 5. Of course, you will want to convey this great news to any and all of your colleagues and fellow researchers, whether or not they share your own interests. My own academia.edu home page is: I would be most grateful if you were to follow me and if you would like me to follow you back, please let me know. Richard

Tags: academia.edu, Adobe Acrobat, Adobe Acrobat Reader, Alan Turing, cognition, cognitive, comparative analysis, computers, cross--comparative, cross-comparative analysis, cryptography, cryptology, Decipherment, doctoral, download, downloads, Enigma Code, Enigma Machine, freeware, graphologists, graphology, handwriting, handwriting analysis, LINEAR B, LinearB, Linguistics, mathematical, MICHAEL VENTRIS, online, post-graduate, publication, publications, research, researchers, Second World War, syllabary, syllabic scripts, syllabograms, theses, thinking, thinking processes, translation, vocabulary, World War II

## Alan Turing & Michael Ventris: a Comparison of their Handwriting

Filed under: Alan Turing, Decipherment, LINEAR B, Measurement, MICHAEL VENTRIS by vallance22 — 1 Comment

April 15, 2015

Alan Turing & Michael Ventris: a Comparison of their Handwriting I have always been deeply fascinated by Alan Turing and Michael Ventris alike, and for obvious reasons. Primarily, these are two geniuses cut from pretty much the same cloth. The one, Alan Turing, was a cryptologist who lead the team at Bletchley Park, England, during World War II in deciphering the German military’s Enigma Code, while the other, Michael Ventris, an architect by profession, and a decipherment expert by choice, deciphered Mycenaean Linear B in 1952. Here are their portraits. Click on each one toENLARGE: Having just recently watched the splendid movie,The Imitation Game, with great pleasure and with an eye to learning as much more as I possibly could about one of my two heroes (Alan Turing), I decided to embark on an odyssey to discover more about each of these geniuses of the twentieth century. I begin my investigation of their lives, their personalities and their astounding achievements with a comparison of theirhandwriting. I was really curious to see whether there was anything in common with their handwriting, however you wish to approach it. It takes a graphologist, a specialist in handwriting analysis, to make any real sense of such a comparison. But for my own reasons, which pertain to a better understanding of the personalities and accomplishments of both of my heroes, I would like to make a few observations of my own on their handwriting, however amateurish. Here we have samples of their handwriting, first that of Alan Turing: Click toENLARGEand secondly, that of Michael Ventris: Click toENLARGEA few personal observations: Scanning through the samples of their handwriting, I of course was looking forpatterns, if any could be found. I think I found a few which may prove of some interest to many of you who visit our blog, whether you be an aficionado or expert in graphology, cryptography, the decipherment of ancient language scripts or perhaps someone just interested in writing, codes, computer languages or anything of a similar ilk.Horizontal and Vertical Strokes:1. The first thing I noticed were the similarities and differences between the way each of our geniuses wrote the word, “the”. While the manner in which each of them writes “the” is obviously different, what strikes me is that in both cases, the letter “t” is firmly stroked in both the vertical and horizontal planes. The second thing that struck me was that both Turing and Ventris wrote the horizontaltbar with anemphatic strokethat appears, at least to me, to betray the workings of a mathematically oriented mind. In effect, their “t”s are strikingly similar. But this observation in and of itself is not enough to point to anything remotely conclusive. 2. However, if we can observe the same decisive vertical (—) and horizontal (|) strokes in other letter formations, there might be something to this. Observation of Alan Turing’s lower-case “l” reveals that it is remarkably similar to that of Michael Ventris, although the Ventris “l” is always asingle decisive stroke, with no loop in it, whereas Turing waffles between the single stroke and the open loop “l”. While their “f”s look very unalike at first glance, once again, thatdecisive horizontal strokemakes its appearance. Yet again, in the letter “b”, though Turing has it closed and Ventris has it open, the decisive stroke, in this case vertical, re-appears. So I am fairly convinced we have something here indicative of their mathematical genius. Only a graphologist would be in a position to forward this observation as a hypothesis.Circular and Semi-Circular Strokes:3. Observing now the manner in which each individual writes curves (i.e. circular and semi-circular strokes), upon examining their letter “s”, we discover that both of them write “s” almost exactly alike! The most striking thing about the way in which they both write “s” is that they flatten out the curves in such a manner that they appear almostlinear. The one difference I noticed turns out to be Alan Turing’s more decisive slant in his “s”, but that suggests to me that, if anything, his penchant for mathematical thought processes is even more marked than that of Michael Ventris. It is merely a differencein emphasisrather thanin kind. In other words, the difference is just a secondary trait, over-ridden by the primary characteristic of the semi-circle flattened almost to the linear. But once again, we have to ask ourselves, does this handwriting trait re-appear in other letters consisting in whole or in part of various avatars of the circle and semi-circle? 4. Let’s see. Turning to the letter “b”, we notice right away that the almost complete circle in this letter appears strikingly similar in both writers. This observation serves to reinforce our previous one, where we drew attention to the remarkable similarities in the linear characteristics of the same letter. Their “c”s are almost identical. However, in the case of the vowel “a”, while the left side looks very similar, Turing always ends his “a”s with a curve, whereas the same letter as Ventris writes it terminates with another of those decisive strokes, this time vertically. So in this instance, it is Ventris who resorts to the more mathematical stoke, not Turing. Six of one, half a dozen of the other.Overall Observations:While the handwriting styles of Alan Turing and Michael Ventris do not look very much alike when we take a look,prime facie, at a complete sample overall,in toto, closer examination reveals a number of striking similarities,all of them geometrical, arising from thedisposition of linear strokes (horizontal & vertical) and from circular and semi-circular strokes. In both cases, the handwriting of each of these individual geniuses gives a real sense of the mathematical and logical bent of their intellects. Or at least as it appears to me. Here the old saying of not being able to see the forest for the trees is reversed. If we merely look at the forest alone, i.e. the complete sample of the handwriting of either Alan Turing or Michael Ventris, without zeroing in on particular characteristics (the trees), we miss the salient traits which circumscribe their less obvious, but notable similarities.General observation of any phenomenon, let alone handwriting, without taking redundant, recurring specific prime characteristics squarely into account, inexorably leads to false conclusions. Yet, for all of this, and in spite of the apparently convincing explicit observations I have made on the handwriting styles of Alan Turing and Michael Ventris, I am no graphologist, so it is probably best we take what I say with a grain of salt. Still, the exercise was worth my trouble. I am never one to pass up such a challenge. Be it as it may, I sincerely believe that a full-fledged professional graphological analysis of the handwriting of our two genius decipherers is bound to reveal something revelatory of the very process of decipherment itself, as a mental and cognitive construct. I leave it to you, professional graphologists. Of course, this very premise can be extrapolated and generalized to any field of research, linguistic, technological or scientific, let alone the decipherment of military codes or of ancient language scripts. Many more fascinating posts on the lives and achievements of Alan Turing and Michael Ventris to come! Richard

Tags: adages, Alan Turing, Bletchley Park, circular, code, codes, consonants, Decipherment, digital, Enigma Code, Enigma Machine, forest, graphologists, graphology, handwriting, horizontal, hypotheses, hypothesis, Linguistics, MICHAEL VENTRIS, sayings, Second World War, semi-circles, semi-circular, strokes, submarine, submarines, trees, vertical, vowels, war, warfare